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ABSTRACT

This report is a continuation of earlier studies in the development
of the theory of differential games with information time lag (DGWITL).
Pertinent aspects of the theory of differential games with information
time lag are summarized. The generalized Hamilton-Jacobi equation for the
linear regulator game is shown to have a o-parametric solution in the
data-reference plane. The main effort in this report has been to provide
examples which demonstrate both the applicability of the theory of DGWITL
and the importance of information delay considerations in control law synthesis.
Examples illustrate the performance degradation that can accompany a failure
to compensate for information delay in differential games. At the same time,
the quantitative effects displayed in the examples serve to motivate questions

relevant to engineering tradeoffs between control law design and system design.




, WU i bt v

-2 -

I. INTRODUCTION

In discussing some possible extensions of his work on differential games (DG),
Isaacs mentioned the need for a relaxation of the assumption that each player in
a DG has perfect information [1], 1In many prantical situations of dynamic conflict,
the assumption cannot be justified. A particular problem which Isaacs cited is
that in which a player in a DG has a time lag associated witn the availability
of his measurements of the opponent’s state vector. In practice, such delays can
occur in a DG when data processing and/or transmigsion takes place prior to the
generation of control signals. The importance of the problem stems from the
practical need to know precisely how much information delay leads to intolerable
performance degradation. At the same time, knowledge of the effects of time delay
might permit relaxation of system design specifications to achieve ar overall
economy of design while maintaining acceptable performance.

The historical basis for the problem appears to be the classical "bomber-
battleship duel", in which a bomber must take into account ordnance delivery time
in deciding when to strike an evasive battleship. Since 1950, a number of papers
have successfully treaced the bomber-battleship duel as a multistage game with
probabilistic strategies [2-9]. However, no treatment of the more general problem
was presented, and little was known about the possible affects of information
delay in dynamic conflict. Subsequently, Ciletti [10] treated finite games,
multistage games and a class of differential games in which one player has an
information time lag. Function space methods provided the solution to versions
of the well known linear regulator differential game with information time lag
(DGWITL) in [11, 12, 13]. The above-referenced works showed that a) the player

with information lag can construct a payoff bound and an associated worst-case
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strategy by considering past as well as future behavior of his opponent,
b) an optimal control problem must be solved to provide the boundary condition
for the game with information time lag, and c) the opponent's strategy which
induces the worst-case payoff - an ideal exploitation strategy - is not
physically realizable because it requires knowledge of future states. These
structural features were shown to be common to finite, multistage and differential
games with infcrmation time lag. N-player DGWITL (linear plants, quadratie
payoffs) also admit to analysis by function space methods [14]. Despite the
availability of results for the linear problem, there was a lack of results for
more general systems and payoffs. Then, an extension of the well-known Hamilton-
Jacobi theory for optimal control and the familiar "main equation" analysis of
Isaacs was developed to treat DGWITL [15]. The Hamilton-Jacobi equation was
shown to have a dual-time-reference form in which the observaticn times (t,t) cf
the state vectors (x(t),y(t)) as well as the spatial data appeared. It was pointed
out that, in general, an optimal control problem must be solved to provide the
boundary condition for the potential value function, Vo(x,r,y,t) over the t-t
data reference plane. The generalized Hamilton-Jacobl equation for Vo(x,r,y,t)
over the 1-t plane can be converted to a partial differential equation in t
along the line t = t-o for fixed o to produce the equation satisfied by the
parametric snlution, Vo(x,y,t;c) [16]. 1In an independent work, Sokolov and
Chernous'ko [17, 18] showed that, under certain conditions of separability, a
class of DGWITL can be considered equivalent to a related DG without information
time lag. Petrosjan [19] treated a discretization of a DGWITL within the context
of mixed strategies.

This paper continues the developments of [15,16]. Section II briefly summe-

rizes the main results of [15,16], and Section III cdemonstrates the application

of the theory for DGWITL to the well-known linear regulator game. The problem will

be solved in closed form over the data reference plane to provide feedback control
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laws which optimally utilize the delayed information. We also present the
specialized solution along the locus of play for fixed o. Structural properties
which distinguish DGWITL control laws from suboptipal control laws are examined.
Section IV presents results of practical significance. By means of a simple
two-dimensional example, we examine the precise effects of information time lag i
on the outcome of a game., Then we consider alternate control schemes which may .
be suggested for use in DGWITL, Simulation results show the effect of using the

DGWITL optimal strategy, a direct insertion feedback strategy (DIFBK), and a

simple predictor feedback scheme (PRFBK).

II. SUMMARY OF DGWITL THEORY

As a point of reference for the ensuing work, we begin with the dynamic

systems controlled respectively by the pursuer (P) and the evader (E):

x = £(x,u(t),t) (1a)

y

g(y,v(t),t) (1b)

when x,y € Rn,g € Rq,% ERFE At each time t the control inputs U and v are to be
determined by control.laws u and v which are members of sets Ku and Kv’ where
K, = {uR® x R® x RS + A,C Ry}, K, = (viR® x &% x RY » AVCRm}, A, and A_ are
locally compact, an?' -—embers of Ku and KV are continuous in t and Lipschitzian

in (x,y). Given regions Gu and GV to which motions of (la) and (1b) are restricted
and a target set SCG = Gu X G, we form KaCKu X Kv to include only those control
law pairs which produce for any initial phase in G-S a solution which reaches §

without leaving G. Accordingly, the terminal time, tf (depending on xo,yo,t u,v)

Q ’

is the first instant at which a solution to (1) penetrates S . With (u,v) € Ka’

(xo,to,yo,to) e G, we associate a scalar payoff made by P to E and defined by:




t

J(xo,yo,to.u,v) = tﬁ le(x(a),u(x(a),y(a),a),a)dc

t

+ S sz(y(a),V(x(a),y(a),a),a)da
[o]

N
FW(x(E),y(E), tp)

where x(-) and y(-) are understocd to be the solution to (1) associated with
the control law pair (u,v).

The methodology of game theory then centers about the task of finding a
saddlepoint of J(+) w.r.t. u and v. The well~known results are that urder
appropriate smoothness assumptions the saddlepoint, or value, V°(:), satisfies
a Hamilton-Jacobi type partial differential equation., The analysis also produces
an implicit definition of the optimal strategies in terms of the states and the
components of the gradient of V°(:). Solution of the HJE leads to closed form
explicit definitions of the control laws u’ and v° which induce the saddlepoint.
Thus, implementation of the control laws requires that x(t) and y(t) be available
to each player at every t,.

The class of DGWITL which are studied here are those in which the evader E
has access to x(t-¢) instead of x(t) at each time t. As shown in [15], this leads
naturally to consideration of control laws u(-) and v(*) which are maps on
n 1 n 1

R xR x R x R so that temporal references as well as spatial data may be

considered. This also leads to study of the following coupled dynamical systems:

T3 x(t-0) = f(x(t-0),u(x(t-0),t-0,y(t),t),t-0) (2a)

y(t) = g(y(t),v(x(t-o),t-0,y(t),t),t) (2b)

m.lo..
(o4

S s vk € 2L £
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with x(to-o) =X, y(to) =Y, This system is one which the evader can think
of as defining the evclution of his observations in time. The usual structural
assumptions on u(-) and v(*) are made here to provide the existence of a unique
solution to (2).

We then address the question of termination. Upon receipt of data (x,t,y,t)
E must first decide whether the game is over, i.e,, could P have applied controls
over [1,t) in such a manner that the path emanating from x puts the present phasé
on §? This leads to an open loop boundary value control problem and the following
definitions.
Def. The preliminary target set, Sp, is the set of all (x,T1,y,t) ¢ R x R1 x R® x R1
having the property that there exists a piecewise continuous u(+):[r,t] + 1.1 and
(x,T,y,t) ¢S, where x is understood to be the solution of (la) at time t > T when
driven by u from (x,7). Members of Sp will be called potentially terminal rhases.
Def. The potential terminal time, tp(xoc,ro,yo,to,u,v) is the smallest t such
that tbe motion of (1) is a member of Sp. Figure 1 illustrates a potentially
terminal phase and a preliminary target set. Various u(*) may be available for
termination, and E has no way of knowing whicih, if any, have been used by P,

Def. For a potentially terminal admissible pair (u,v) we define the remaining

payoff:

t -o

Jr(XOO’TO’yO’tO’u’a’V) = T{; P Ll(x(a),u(x(a) »a,¥(ato) ,oto) ,a) da

t
+ tf P Ll(y(a),v(x(a-o),a-c,y(a),a),a)da
0

t

ARKOROREE W)y (6),8)




Def. The potential terminal payoff on Sp is given by:

N oo
W(x,T,y,t) = min W(x(t ),y(t ),t ) +
- = P 1
ueKu

t

rf P Ll(x(a),ﬁ(a),a)du

Def. The potential payoff, Jp('), is defined to be:

=W - -
Jp(xo,ro.yo,to) (X(tp o),tp o.y(tp),tp)

t ~0
+ Tf p Ll(x(a),u(x(u),a,y(a+0),a+c),a)da
0

t
* P L@, v(x(a-0) ,0-0,y () ,0) da
[0}

The problem of DGWITL is that of finding the potential value, V°(:), or the
saddlepoint orf Jp(-) w.r.t, u and v (we assume that V°(*) exists). With each
(x,71,y,t) we associate V°(x,t,y,t), and the results of [15] show that, under
the assumption that V°(-) is continuously differentiable in its argument

in G—Sp, the potential value satisfies the following generalized Hamilton

Jacobi equation:

AT A o oy _
> + 5t +H (x,T,y,t,Vx,Vy) =0

where:

Ho(x)T:y’t9v;’v;) = H(x,T,y,t.V;,V;,kl (x’Tsy,t;V;,\:;) ,kZ(X;T,y»t»V;:v;))’

ekt e

e i e,
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m{]n mgx H(X)Ta)ﬂt’uosaxxyxy) - mgx m::-ln H(x,‘t,y.t,u,ﬁ,lx,ky) -

- H(x,T,y,t,kl(x,f,y,t,kx,ky),kz(x,T,y,t,lx,Ay),Ax,ly)

and

H(") = <Ax,f(x,u,r)> + (Ay,g(y,a,t)> + Ll(x,u,r) + Lz(y,B,t)
with

weA CRL Be AVCR“',Ax,Ay e R°.
The generalized Hamilton-Jacobi equation is defined on the playing space for
P and E and over the 1-t "data reference plane'"; its boundary condition is
given by the potential terminal payoff, W(-), on Sp. The novel feature oi this
equation is the presence of 1, the time corresponding to the delayed state
variable x. In optimal control problems and in DG with perfect information,
it is implicit that all spatial variables are assoclated with a single time, t.

The procedure for forming the generalized Hamilton-~Jacobi equation specifies

the control law for E which implements the data (x,T7,y,t) in an optimal fashion

while accounting for the age of the data.
ITI LINEAR REGULATOR REVISITED

We now present the linear regulator as an example to illustrate application

of the theory of DGWITL to a tractable problem. The systems are described by

x = A (O)x(e) + Bp(t)ﬁ(t); x(r) = x,_

7 = A (D)y(e) + B (DV(D); y(t) = y,,

with HORY Wel R3, Vi) e A,C R",

The target set is given by: S = {(x,t,y,t) : t = T}, therefore, the

preliminary target set is simply Sp = {(x,1,y,t) : T = T-0, t=T}, where




o A'To-to' The: terminal time is tf = T, and the potential terminal time is

tp(xoo,To,yo,to,u,v) = T, since the game has specified duration. The remaining

payoff function is

- 2
Jr(xoo,to,yo,to,u,u,v) = le(T) - y(T)HF +

T- 2 Ty~
SN e+ o]

T 2
a- S]]
Rp(a) t,

2
d da
Rp(a) Re(a)

2
. . | ~ '
where F > 0, Rp( ) >0, Re( ) >0 | ||u,pr(a) d~notes u (a)Rp(a)u(a) and all

matrices ire of consistent dimension. The potential terminal payoff on S_ is the
solution to the following optimal control problem. Let (x,t,y,t) € Sp, i.e., o

T = T-0 and t=T. Then:

WG T0,3,1) = min | [yl [g + oL 317 ()0
ueKu p

and Ku is the set of piecewise continuous u: [T~0,T] - rY. Function space or !
other methods can be applied to this problem, and we simply provide here the

result:

1

W(x,T-0,y,T) = [¢p<T,T-o)x—y]'[F“ + SR;18*1‘1[¢p(T,T—o)x-y]

where

1

- T -1
* ' '
SR pS A Tfo ¢p(T,a)Bp(a)Rp (a)Bp(a)¢p(T,a)da

and ¢p(') is the transition matrix for Ap(-). The optimal terminating control,
ﬁ, is given by

u(a) = —R;l(a)Bé(a)¢;(T,a)[F-l + SR;IS*]—l[¢p(T,T—o)x-y],ae[T-o,T]

Thus, u(+) is E's determination at time T of the best control P could have applied :




——
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over [T-0,T] from x(T-¢g) with knowledge of y(T). It follows that the potential
payoff is simply

Jp(xoo’TO’yO’tO’u’v) = [¢p(T,T-0)x-Y]'[F-1 + SR;]'S*]-INP(T,T-G)X‘Y]

T-0 2 T 2
+ tf—d ||u||R (a)da - tj ||v||R (u)da
o P o e
where x = x(T-0) and y = y(T). To apply the theory for DGWITL to this problem

we form the generalized pre-Hamiltonian:

H(xsT,)htaxx’Ay:UpB) = <Ap(T)x + Bp(T)u,Ax> +

<Ae(t)y + Be(t)e,xy> + <u,Rp(T)u> - <B,Re(t)8>

The usual min max operation leads to:

-1
kl(x’T»Yst’Ax’Ay) ."' '%-_ Rp (T)BI;(T))\X

. - -1 .
kz(x,r,y,t,xx,xy) %Re (t)Be(t)Ay

and the following generalized Hamiltonian

° = w'A! 1.y -1 '
H (x,r,y,t,Ax,Ay) X Ap(T)Ax 4Apr('r)Rp ('t)Bp('r))\x

.1‘.' -1 ' Tat
+ 4AyBe(t)Re (t)Be(t)Ay +y Ae(t))\y

The generalized Hamilton-Jacobi equation satisfied by the potential value

is:
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° © TAl o TA? °
vT + vt + x Ap(r)vx +y Ae(t)Vy

-l°' -1 ' ° !-_01 -1 ] o _
4Vx Bp(r)R.p (T)Bp(t)Vx + 4Vy Be(t)Re (t)Be(t)Vy =0

with boundary condition:

Vo (X, T,y,t) = [¢p(T,T-c)x—y]'[F_1+SR;lS*]-1[¢p(T,T-o)x—y]
=T-0
t=T
[«] [¢1(T,1-0)
LI x po2 7 -1 -1 * -1 _ _ b4
Ly = (F~ + SR °S 1 [¢p(T,T o) ! -I] y

where I denotes the identity matrix for Rn. We point out here that letting

0+0 and 1>t produces the well know results for DG without time lag. Following 1

the procedures for linear optimal control and DG we next assume that

x| P(1,t)

Ve(x,T,y,t) =

where P(*) is a 2n x 2n symmetric matrix. Then

° \
Vx(x,r,y,t) 2(P11(1,t)x + Plz(r,t,y)

Vy(x,r,y,t) = 2(P12(T,t)x + P22(T,t)y),

and we are naturally led to the condition:

1]
xI" o) + %(T,t) + P(1,0)A{T,t) + A'(1,8)P(1,t)

0= y aT

+ P(1,t)B(1,t)P(1,t)} ; ,
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in G- S with
P

-1 '
Ay 0 -B_(T)R_(1)B' (1) | 0
At,t) =| B B(r,t) = | —-B-no-B p
0 =Ae(t)

0 | 3, (O ()8! (t)

P, (t,t) P, ,(1,t)
and P(t,t) = 11 12

Plz(T,t) P22(r,t?

Since the condition holds for arbitrary x and y, the following generalized

matrix Riccati equation must be satisfied over the 1-t plane with <t <t<T:

TUTE) + 2,0 + P(LOATY) + A (5, 0P (5, 0)

+ P(t,t)B(t,t)P(t,t) =0 (4)
subject to:
¢' (TyT-G)
P(1,t) Ny 0 S Ft o+ s tsx e (1,1-0) | -13, (5)
-1 P P
1=T~0
t=T

From the sufficiency theorem for DGWITL {15] we conclude that the non-realizable

optimal exploitation strategy for the pursuer is

-1
u’(x,1,y,t) = —Rp (T)B;(T)[Pll(f,t)x + P,(,t)y],

the DGWITL optimal strategy for the evader is:

Ve (6, T,y,t) = R N(DBL(E) [P, (1,0)% + Poo(1,t)y],




a2
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and the potential value is

Vo (x,1,y,t) = ; P(t,t) | ¥

in the neighborhood of (T-0,T) in which the solution to (4) is positive definite.
Although the quadratic payoff-linear control structure of the solution has been
preserved, it is important to note that the generalized Riccati equation is defined
on two temporal parameters, while the potential value is defined on the spatial
variables and their associated temporal parameters. This point is emphasized by
Figure 2, which illustrates the so-called "data reference plane' for this problem.
The shaded region of the plane below 0=0(t=t) is that region over which (4) must be
gsolved. The line t=T is the locus on which the potential terminal payoff provides
boundary data for V°(-) over the shaded region. If the DG with zero time lag has
already been solved, it may be used to provide boundary data along o=0. The
behavior of V° along a line of fixed t with t < t is the "aging data problem," a
problem of practical interest.

In general, the generalized HJE over the 1-t plane must be converted to a
"delayed argument" partial differential equation in t along the line t = t-g. So,
we must convert the generalized Riccati equation in t and t into a Riccati equation
in t with parameter o appearing in delayed arguments of the time varying matrices.
That is, we wish to generate solutions in parametric form by solving the GHJE along

a fixed-o locus for a DGWITL in Figure 2. For a fixed o, let

P(t;0) A P(1,t)

T=t-0
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Then:
dp aP dr . oP,_
E?(t’c) '3;(T,t) It +‘32(TA~)
=t-g T=t-g

It follows directly that the solu’.ion to (4) along the line t = t~g with

boundary condition (5) must se. isfy:

%EP(t;o) + P(t;0)A(t-o,t) + A'(t-0,t)P(t;0)

+ ﬁ(t;o)B(t-o,t)ﬁ(t;a) =0 (€)

subject to:

-1

P(T;0) =|--Boemeeae [F +sa;ls*]‘1[¢p(T.T-0) -1] 7

To indicate the solution along T = t-g we write:

X

° L] x 'A -
Ve (x,y,t;0) y P(t;0)

-1 o2 A
u’(x,y,t;o) = --Rp (t-o)B;(;~0)aP11(t;o)x + Plz(t;o)y]

v°(x,y,t;0) R;l(t)Bé(t)lﬁlzft;o)x + ﬁlz(t;g)y]

Figure 3 illustrates the block diagram fcr the evader's DGWITL feedback
control law. For additional emphasis, we write xp(-) = y(*) and xe(') = y(+).
While the linear feedback structure has been preserved, the DGWITL control law
is distinct from the control law for the game with zero time lag. The important

difference is that the control law uses the pursuer's delayed state vector and

S




Riccati gain function obtained from the solution to a Riccati equationwith

delayed arguments.,

As an alternate scheme, one can define

1
R,
i ¢! (t-0,t)| O . ¢ (t-0,t)) O
i ?(t;o) =|-B : P(t;o) 4 E
1. o | -1 0 1 -I
3
Then:
-1 |
u’(*) -R_"(t-0)B’'(t-0)¢'(t,t-0)1 0 ¢_(t,t-0)x(t-7)
S [ Rabise b Do Brso) | 2
v (") 0 LR oB (e y(t)

"
where P(";0) satisfies th: Riccati equation in the control law block diagram of
Figure 4. This representation of v°(:) exposer the "simple predictor" portion of
the control law, i.e., ;p(t) = @p(t,t-o)xp(t—o). The evader cau form ;p(t) with

1 certainty, since it ‘- determined solely by P's dynarics. This control law also

; requires the solution of a Riccati equation with delay arguments. It is clear
from this representation that the effect of introducing the :time delay 1is to

create both a predictor and a o-dependent Riccati gain ‘n E's optimal strategy.
é IV. CONTROL LAW COMPARISON

In practice, an information delay may not be detected >y E. E would then
be led to synthesize the DGWFL control law in ignorance of :he fact that x(t-g)
was being observed instead of x(t). Or, an aware E may sivjp v conjecture that
the delay is of no consequence. We call tae control law whi~h uses the delayed

state in the DGWFI law a 'direct insertion feedback law"(DU"{). Another
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possibility is that E can simply predict - in the manner already mentioned -
P's present state and continue to use the Riccati gain of the DGWFI law. These
two suboptimal control laws may be appealing because they don't require the use
of delayed arguments in the Riccati equation solutions for their feedback gain
functions. One might even expect reasonable performance from the predictor law
since it synthesizes a portion of the DGWITL law. Both of the alternate control
laws can be formed in Figure 4 by setting o0=0 in both the predictor and gain
generator and in only the gain generator, respectively. In applying game theory
we would like to know whether it is important to take into account { formation
time delays in a competitive situation, or whether it isAsufficient to use one
of the suboptimal schemes described here. Although the answer to these questions
depends on the individual DG, we provide, by means of an example, a yuantitative
illustration of the effect of information delays, with the intention of giving
both an insight about the approach that can be taken for the study of other
examples and a demonstration of the importance cf such consideration in practical
problems. We demonstrate that even small information lags (relative to the time
constants) can lead to .sericus performance degradation if the delay is ignored
and the DIFBK law is used. At the same time, a simpie predictor may likewise
be inadequate. We also show that the DGWITL law effec:ively compensates for the
information time lag and results in a marked improvement in performance; In
addition to comparing these control laws, we examine the effect of the time lag
on the existence of the solution to a DG example, i.e., the effect of time lag
on the oc~urrence of a conjugate point in the delayed argument Riccati equation
solution.

To illustrate the various vointrs in the preceding discussion we consider the

gcalar version ot the linear regulatcr results. ‘fhe equations ¢i motion are

L i
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X =ax +b ﬁ (8)
P PP P

N
X, = azx, + bev, (9)

and all parameters are scalar constants. The remaining payoff 1s taken to be:

N 2 1 T-0 2
3.() lxp('l‘) - xe(T)| + _Cp J v (a)da
- = fTvz(a)da + 1. fT uz(a)du, (10)
c t c_ T
e P o

with 0 = 1-t, cp >0, c, >0 and T fixed. The potential terminal payoff is the
solution to the optimal control problem given by
- 2 1 T -2
W(x_(T-0),T-0,x_(T),T) = min{|x (T) - x (T)|° + = /" v (a)da}
P e uek P € p T=o
u

subject to xp = 3 X

p%p + bpﬁ, T-0 <t <T, xp(T—o) given,

The solution can easily be shown to be:

a
2
[e Px (T-0) - x (D]
W(XP(T-O),T"U,xe(T)yT) = = 9

The potential payoff is:

adg

2
e P x (T-0) - x (T)] -
J =P e L 02 he - L T 200 4.
p 9 cp T Ce t
cb 2a g
1 +—1’—-P-2ﬁp [e -1]

i i D s Al s
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By performing the analysis which was described in the Preceding sections we are

able to show that the potential value and the optimal strategies have the following

solution:
a (T~7) a (T-t) .
[e P x -e© x 1°
o - P e (11)
T TRet) 6(r,0)
a_(T-1) ae(T-t) a (T-1)
-cb [e X - e x]e
u(x ,T,x ,t) = —28 R (12)
P G(t,t)
a_(T-1) ae(T-t) ae(T-t)
-c b {e X -e xe] e
vo(x ,T,x ,t) = —28 P
€ 6(1,t) (13)
where:
2
cb 2a_(T-1) cb 2a_(T-t)
G(1,t) = 1 +~12’;2 [e P -1] - gae [e € -1] (14)
P
Alternately:
a_(T-t+o) a (T-t)
{e P x (t-g) =e & xe(t:)J2
Ve (x X st30) = £ (15)
P G(t;0)
a_(T-t+o) ae(T-t) a_ (T-t+g)
-cb [e?P x (t-g) ~ e x (t)] e P
° . PP P e
u (xp,xe,t,a) - - (16)
G(t;o0)
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a (T-t+0) ae(T-t) ae(T—t)
-c b le P x_(t-g) - e x (t)] e
v(x_,x_,t;q) = P & (17)
p’e -
G(t;a)
and
. cb?  2a (T-t+o) cebz 2a_(T-t)
G(t;0) = 1+ 2L (e P -1] - 5= [e ~1] (18)
ap 2ae

Figure 5 contains the block diagram for (15), with the "simple predictor" portion
highlighted.

It is easily verified that the conjugate point of the Riccati gain matrix
corresponding to (15) is solely determined by the zero crossing of é(t;o) in
the neighborhood of T, and ultimately on the relative value of the parameters
in (8), (9) and (10).

To explore the effect of information delay on the existence of solutions to
the linear DGWITL, we examine (14) and seek the locus of conjugate points in the
data reference plane. Tetting tCR(t) denote the value of <T at which (14) has a
zero crossing we are able to locate the conjugate points for fixed system parameters.
For our purposes it ié enough to present the results in Figure 6, which show rCR(t)
vs t for various system configurations, with bp = 0.8, cp =c, = 1.0, ap = -0,2,
a, = ~0.4, and T = 5,0. The area under the curve defined by TCR(') is the region
of the plane foi which &(-) is positive. Lines drawn parallel to and below the
line 1=t correspond to DGWITL, For be = 1.35 the line 1=t does not intersect ToR?
so neither the DGWFI or the DGWITL have conjugate points. For be = 1.4 the DGWFI

has a conjugate point at t = 3.5 secs. A DGWITL with 0<0<0.7 also has a conjugate
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point, and the time at which it occurs is farther from T than the time associated
with the NGWFI conjugate point. Hence, the information delay extends the half-
iaterval about T for which (18) is valid. For ¢ > 0.7 the DGWITL does not have a
conjugate point., Thus, if sufficient information delay is present the conjugate
point vanishes. For be = 1,45 the DGWFI has a conjugate point at t = 3.8, The
DGWITL also has a finite-time conjugate point at g(c). For g = 3, t = -1,25, These
three choices of be demonstrate that the information delay effectively lengthens
the solution interval about T and may extend it to -«, depending or the problem
parameters, Similar results can be obtained for formulations in which the pursuer
has an information delay.

To demonstrate the importance of properly compensating for information time
lag in a differential game, we now consider three control laws which may be
implemented in a DGWITL. The first control law is the DGWITL law of Figure 5.

The "direct insertion feedback" law (DIFBK) is synthesized by using the perfect
information control law in spite of the presence of delayed data., In Figure 5
this corresponds to setting o0=0 in the Riccatl gain and in the pradictor. By
ignoring the time delay, E synthesizes this law., The third law we synthesize is
the "predictor feedback" law (PRFBK). This law approximates the DGWITL law by
setting o=0 in the Riccati gain while maintaining the correct ¢ in the predictor.
In general, E might be motivated to do this by the requirement of solving the
generalized Riccati equation when the various system matrices are time varying.
Certainly this might be a reasonable scheme when ;(.;o) is not sensitive to ¢ over
the interval of interest.

To compare these control laws we simulated (8) and (9) and evaluated (10) on

a digital computer, using Runge-Kutta integration. Because the pursuer law given




—

e

- 21 -

by (16) is not physically realizable (see [15]) we simulated a pursuer that

used the following DGWFI control law:

b ap(T-t) © ae(T-t) ap(T-t)
o - —C e x (t) - e x (t)]e
u (xp,xe,t) PP P e (19)

G(t;0)
For the purpose of simulating this control law, E's path history over [to-o,to]
was taken to be the autonomous motion of (9) with terminal boundary condition
given by y(to). This corresponds more closely to a physical situation in which
E is inactive prior to being alerted that the conflict has commenced. For the

purposes of simulation, the following parameters remained: ap = -2, a, = -.4,

bp .8, be =1.2, cp = 1,0, c, = 1.0, T = 5.0. For a fixed xp(to—o) and xe(to)
we then chose to’ to £ 5.0 and simulated the game for various o, with
0 <0 <5.0. Thus, each choice of the pair (to-o) corresponds to a different
game. Letting to + T results in simulations having a shorter interval of play
for E. Since the physical data, xp(to-o) and xe(to),remain fixed for all
simulations, increasing o effectively changes the time corresponding to P's
location at the fixéd xp. This corresponds to the practical problem of determining
how the outcome varies as a function of the observation time associated with
the fixed spatial data. In general, control over starting times and initial data
may not be allowable, so the important comparison to be made is that which relates
the payoffs associated with the three control laws for a given to,c, xp(to-o),
and xe(to)-

By letting xp(to-o) = 10.0 and xe(to) = 20.0 we obtain the potential value,
0

V", directly from (15). The behavior of v® 1s displayed in figure 7. Figures

8-10 illustrate the simulated J J and J the remaining payoffs when the

TL> DI’ PR’

time lag control law, the direct insertion feedback law, and the predictor

feedback law are used, respectively, by E. The graphs show the behavior of
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these payoffs for games beginning at various times and having various information
lags. Examination of the curves for a given to and 0 shows that the DGWITL
control law bounds the payoff from below by the potential value. Since P can't

realize the optimal exploitation control law, J_. 1s actually better than vo. At

L
the same time, the DIFBK and PRFBK laws permit large negative payoffs. It is
also of interest to note that serious performance degradation can occur when the
informaticn time lag is ignored (DIFBK), even for data lags that are small
relative to the time constants of the systems, e.g., for to = (0.0 and o= 1.0
(the system time constants are 2.5 secs. and 5.0 secs.,). Figure 11 illustrates
the relative performance of the control laws for to = 0,0 by showing the loss

in payoff incurred by DIFBK (nDI) and PRFBK (nPR) normalized by the maximum

loss incurred by DIFBK for 0 < ¢ < 5.0,

To interpret the numerical data in more detail it should be noted that,
because the plants are stable and the initial cr-vdinates were both taken to be
positive, the natural motion of (8) over [to-o,tO] works to P's disadvantage -
in the sense that if P was inactive over [to-o,tol the actual separation at
time t, would be greate:'than |xp(to—c) - xe(to)l. In Fig. 7 the potential
value is always bounded from below by zero, since E can choose to do nothing
in (9). For to = 5.0 the solution corresponds to the potential terminal
payoff.

Figure 12 shows the behavior of JTL’ JDI and JPR for the same spatial data
but with L, = -5.0. For this game of longer duration (10 secs.) non-negligible
payoff degradation accompanies DIFBK and PRFBK control even for relatively
small information delays. Fig. 13 shows the P and E trajectories resulting from
DGWITL and DIFBK control by E. Although the terminal miss for DIFBK is better,
E's net performance is worse because the DIFBK law erroneously uses excessive

energy in the terminal phase of play. Figure 14 shows the remaining payoffs
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for a game of 5.0 secs. duration with different spatial coordinates. Here
the detrimental use of the DIFBK law is very apparent, Figure 15 shows
the payoffs for the same spatial data but for play of 10 secs. duration.
Again, it is clear that ignoring the information delay can lead to serious
performance degradation. At the same time, even the predictor control law
leads to what might be considered to be unacceptable performance. On the other
hand, the DGWITL control law appears to lead to performance that is much
less genzitive to the information delay.

To display the effect of the relative location of P and E w.r.t. the
origin, we let xp(to-o) = 20.0 and xe(to) = 10.0. Figure 16 shows the plot
of the potential value. For jiven t , V°(y) decreases w.r.t. g for the |
range of O shown, except for t, = 5.0, where a slight increase occurs near ;
0 = 5.0, The main effect causing this decrease of potential value as the data i
ages is the natural component of P's motion over [to—q,to]. This tends to place

the actual xp(to) closer to xe(to) with no effort on behalf of P. For ¢ beyond i

3.5 secs., however, this effect works to E's advantage.

Figures 17, 18 and 19 show JTL’ JDI and JPR for the various to and o.
The superiority of the DGWITL control law is evident. Figure 20 shows these
payoffs for tO = -5.0 (i.e., a 10 sec., game). ' :ain, the payoff degradation
due to failure to compensate properly for the information delay is evident.

As an alternate scheme, we simulated the situation in which the pursuer
was 1lnactive over [to—O,tO], thus the motion of both P and E was autonomous
over this interval. Figures 21, 22 and 23 contain plots of xp(to—o) = 10,0
and xe(to) = 20.0. Here we see that for large o and a short interval of play
(e.g., t, = 4.5 secs.) the DIFBK law does slightly better than the DGWITL law,
Since P is not synthesizing the exploitation control law, this is possible.

However, the DIFBK law does not provide E with the payoff-bounding property.
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Also, for small o the superiority of the DGWITIL law is retained. In comparing
Figs, 21-23 with Figs. 8-10, we expect the greatest difference in performance
to occur for larger o, where the effect of the different initialization scheme
is more pronounced. Fig. 24 illustrates the performance due to the three

control laws for t, = 0.0 and‘xp(to-o) = 10.0, xe(to) = 20,0, Figs. 25-27

are for spatial data of xp(to-o) = 20.0 and xe(to) = 10,0. Fig. 28 contains
Iy, (0), JDI(o) and JPR(o) for the same data and t = 0.0.

V. CONCLUSIONS.

It is clear from the few basic examples presented here that failure to
include a consideration of information delay in the synthesis of a control
law can result in serious performance degradation, even for relatively small
amounts of time delay. We expect that similar phenomena can occur in more
complex and realistic problems. Our work in this paper serves to demonstrate,
for the first time, that detecticn of information delays and determination
of their significance by means of the DGWITL theory should be part of the
overall synthesis procedure in situations of dynamic conflict.

From an engineering viewpoint, the DGWITL theory provides the framework
within which the system designer can assess the payoff degradation due to
information delay and establish acceptable amounts of delay. The control law
synthesized by the DGWITL theory can also be used as a means for comparing
the performance of suboptimal control laws, such as the predictor law used
in the examples. In general it is necessary to perform the assessment over
the regime of spatial data for the problem. Some spatial regimes may admit
the use of a suboptimal law, while others may require the DGWITL law in order
to maintain system performance. Not only does the DGWITL theory allow the
system designer to assess the payoff degradation; it also provides the designer
with an important engineering option. If the DGWITL law can maintain acceptable
performance over a spatial regime, then the designer has the option of deliberately
introducing information delay so that a single slower computer - data acquisition
system may be used, or a sufficiently fast computer - data acquisition system

may be used to simultaneously control several systems, each of which employs

Shaiebaiicd.
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*
a DGWITL controller . These engineering tradeoffs underscore the relevance

and importance of the theory of differential games with information delay.

* For a hypothetical example, from Fig. 20 it is clear that the DGWITL law would
enable use of a computer - data acquisition system which generated a one second
information delay; alternately, more than one system may possibly be controllable
by a faster computer which presented each system with the same one second delay.
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X,(t-0) R (t)B)(t)
PlZ(t;o) n J
-y
%e(t) A
Pzz(t;c)
%_P%(t;c) + P(t;0)A(t-0,t) + A'(t-o,t)P(t;0)
+ P(t;0)B(t-0,t)P(t;0) = 0
¢'(T,T-0)
A p -1 “1ogq-1
P(Ti0) = | —oooeeee (F™ + SRS*) ™ [0 (T,T-0) | -1]
-1

Fig. 3. Evader DWITL Control Law.
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Fig. 4. Predictor Decomosition of DGVITL Control Law.
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